Si-Sr (Silicon-Strontium)

H. Okamoto

The Si-Sr phase diagram in [Massalski2] was redrawn from [1989Itk]. Three intermediate compounds (Si₂Sr, SiSr, and SiSr₂) were shown. This phase diagram was reinvestigated by [2004Pal] in the range 25-100 at.% Sr by means of differential thermal analysis (DTA), metallography, x-ray diffraction, and electron microscopy. The result is shown in Fig. 1. Four intermediate phases were found to exist. Si₂Sr is dimorphic. The transition temperature was found at 590-690 °C by DTA (20 °C/min heating) or at 400-450 °C by high-temperature x-ray analysis (0.1 °C/min heating). The liquidus of β Si₂Sr is symmetric while the solidus is strongly asymmetric around the stoichiometric composition. This is thermodynamically unlikely. The thermal effect observed at

 Table 1
 Si-Sr crystal structure data

 ${\sim}1030~^\circ C$ between βSi_2Sr and SiSr has not been accounted for.

Si-Sr crystal structure data shown in Table 1 were taken from [Massalski2] and [2004Pal].

References

- **1989Itk:** V.P. Itkin and C.B. Alcock, The Si-Sr (Silicon-Strontium) System, *Bull. Alloy Phase Diagrams*, 1989, **10**(6), p 630-634
- 2004Pal: A. Palenzona and M. Pani, The Phase Diagram of the Sr-Si System, J. Alloys Compds., 2004, 373, p 214-219

Phase	Composition, at.% Sr	Pearson symbol	Space group	Strukturbericht designation	Prototype
(Si)	0	cF8	Fd3m	<i>A</i> 4	C (diamond)
βSi ₂ Sr	33.3–38	<i>tI</i> 12	I4 ₁ /amd	C_c	ThSi ₂
αSi ₂ Sr	33.3	<i>cP</i> 12	P4 ₃ 32		
SiSr	50	oC8	Cmcm	B_f	CrB
Si ₃ Sr ₅	62.5	tI32	I4/mcm	$D8_l$	Cr ₅ B ₃
SiSr ₂	66.7	oP12	Pnma	C23	Co ₂ Si
(BSr)	100	cI2	Im3m	A2	W
(aSr)	100	cF4	Fm3m	<i>A</i> 1	Cu

Fig. 1 Si-Sr phase diagram